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The main challenge in the field of atmospheric boundary layer (ABL) reseach

today lies in the need of achieving better temporal and spatial description of its pro-

cesses. Advancing in that direction means more refined and reliable numerical models

for daily weather forcasts, dispersion events, and future global climate on Earth. Mi-

crowave radars based on the FMCW technique have proven to be an excellent tool for

ABL studies. They provide high sensitivity, high range resolution needed for obser-

vation of small scale turbulence, and very small blind range. This thesis describes the

ongoing research effort for development of an FMCW wind profiler operating at 915

MHz which at a later stage will utilize spaced antenna (SA) technique for retrieval of

3D winds within the ABL. It discusses in detail the choice of the radar specifications,

the hardware development of each of its subsystems, the laboratory tests performed

to evaluate their performance, and the results of the first field deployment. Important

conclusions and recommendations for the future hardware development of the radar

summarize this work.
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CHAPTER 1

INTRODUCTION

1.1 History and Motivation

The processes taking place in the lower troposphere, called atmospheric boundary

layer (ABL) have highly influenced life on Earth. Many important weather and cli-

mate phenomena are principally driven by the atmosphere-surface interactions in the

boundary layer. ABL research and studies help (i) develop and improve the existing

numerical weather prediction models, (ii) understand the transfer of heat, water va-

por and momentum between the Earth and the atmosphere, (iii) refine the analytical

description of turbulent processes, and (iv) quantify the absorption and emission in

the troposphere, which is a major factor in shaping climate on Earth. The effect

of the troposphere on wave propagation has also been studied extensively for the

purposes of improving radio communications. Radio signals are highly sensitive to

changes in the refractive index which makes it very important to have a full and de-

tailed description of the refractive index structure, its temporal and spatial variations,

and vertical profiles. Radar remote sensing of the troposphere covers a wide range

of applications. A major driving force for the fast development of radar technology

was the need for continuous monitoring of the wind profiles and fields in the atmo-

sphere. Vertically pointed radars can measure vertical wind velocities. Doppler Beam

Swinging (DBS) and Spaced Antenna (SA) techniques are used to retrieve horizontal

winds, thus achieving three-dimensional wind fields [17] [16]. The efficient and timely

manner of human response to a chemical, biological and nuclear event is primarily

based on the accuracy of the dispersion models being developed today. These mod-

1



els need data from different remote sensing sensors as well as in-situ measurements

to estimate the local turbulent intensity and wind fields. Near-surface and low-level

winds play a critical role in such estimates. This lower part of the boundary layer

is often missed by conventional pulsed radars due to limiting factors such as pulse

width and switching speed of the transmit/receive switches when a common antenna

is used. Clear air refractive index fluctuations also have a radar cross section (RCS)

which can be several orders of magnitude smaller than that of hydrometeors. This

leads to high gain and high transmit/receive isolation requirements to achieve the

required high sensitivity. Pulsed radars would need fast, high-power switches and

good receive/transmit isolation paths.

A frequency-modulated continuous wave radars are a class of radar systems with

a 100 (or close to 100) percent duty cycle that utilize a form of frequency modulation

on the transmitted signal in order to retrieve range information. Radars based on

the FMCW technique have been proven to be an excellent tool in remote sensing of

the atmospheric boundary layer. Their strength lies in their high sensitivity due to

their high duty cycle and ability to detect refractive index structure parameter C2
n

with very high spatial and time resolution. Their weakness, on the other hand, are

antenna parallax due to the dual antenna system (needed to achieve the required

isolation) and uncertainty in the actual sampling volume at near ranges.

The use of FMCW radar for boundary layer research started in the 1960’s. Richter

[15] was the first to develop and describe the technology in 1969. Almost a decade later

Chadwick et al.[5] reported successful Doppler measurements with a FMCW radar. In

the following years, observation and further analysis of patterns like Kelvin-Helmholtz

instabilities, gravity waves, convection cells, convergence or divergence zones, turbu-

lent plumes, wind shear, jet streams, etc. were strongly facilitated by radar data.

FMCW radars were able to provide space and time continuous morphological picture

of the boundary layer as well as bulk temperature and pressure information retrieved
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from the wind fields [8]. Most of the initial wind profilers operated at the VHF or

UHF frequency bands. As reported in [19] there exist few S-band FMCW radars for

atmospheric boundary layer studies, one of them being the UMASS S-band FMCW

radar developed at MIRSL. The change in frequency band from the more common

UHF to S-band alleviates the problem with antenna size but makes the radar sen-

sitive to Rayleigh scattering from insects which can be much greater than the weak

Bragg scattering from refractive index irregularities. This requires implementation

of effective, and in the case of real time processing, fast DSP techniques that can

separate the two effects.

The Microwave Remote Sensing Lab at UMASS, Amherst received an ARO grant

“Investigation of Turbulence and Intermittency in the Convective Boundary Layer

Using a 915MHz Volume Wind Profiler“ (A. Muschinski, S. Frasier, PIs) to develop a

low-power, cost effective and mobile UHF FMCW-SA wind profiler that can observe

and retrieve information about the structure and processes in the convective boundary

layer with high resolution, particularly its lower portion, as well as provide detailed

three dimensional wind field measurements. The proposed profiler uses a spaced

antenna(SA) technique to retrieve horizontal wind speed instead of the more widely

used Doppler Beam Swinging (DBS) technique. Advantages of SA compared to DBS

are the reduced time needed for the measurements due to the reduced sampling

volume leading to more rapid wind estimates, as well as relaxing the assumption of

uniform winds within the volume.

The objective of this thesis is to provide a detailed account of the recent progress

achieved in the hardware development of the proposed UHF Wind Profiler. Important

design considerations, system integration, and laboratory tests of the radar subsys-

tems account for the main body of this work. First field deployment results, valuable

conclusions derived, and recommendations for future work are discussed towards the

end.
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1.2 Summary of Chapters

Chapter 2 gives a brief description of the atmospheric boundary layer, its struc-

ture and characteristics followed by basic clear-air backscattering theory applied to

ABL studies with radar remote sensing techniques. At the end of the chapter, the

principles of operation of FMCW radars are discussed and important analytical re-

lationships presented. Based on the theory and concepts from Chapter 2, Chapter 3

describes the design and development of the Wind Profiler and its current hardware

configuration. A detailed description of the Wind Profiler subsystems - transmitter,

receiver, calibration loop, vector modulator section and antennas is given. Chapter

4 presents the laboratory evaluation of the Wind Profiler in terms of its gain, noise

figure, sensitivity, calibration, and antenna leakage cancellation. Chapter 5 describes

the first field deployments, presents the results and important conclusions derived

from them. Chapter 6 contains a summary of the research work presented here,

conclusions drawn and recommendations for future work.
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CHAPTER 2

FM-CW RADAR PRINCIPLES

FMCW radars have been known as a remote sensing tool for probing clear air

atmosphere since the 1970s [15][5]. Some of their major advantages compared to

conventional pulsed radars are (i) very high resolution that can reveal small scale

turbulence patterns, (ii) small peak to average power (≈ 100% duty cycle), and (iii)

a small blind range that allows for sounding of the lower few hundred meters of

the boundary layer. This chapter provides a basic description of the atmospheric

boundary layer, derives the relationship between radar parameters and measured

physical quantities, and describes the basics of the FM-CW theory of operation.

2.1 Atmospheric Boundary Layer - Definition and Charac-

teristics

The Atmospheric Boundary Layer (ABL) is usually described as the lowest portion

of the troposphere where air-surface exchange of heat, moisture, and momentum takes

place creating strong mixing and turbulent processes on short time-scales (up to a

few hours). The structure and height of the boundary layer exhibit strong diurnal

dependence and are highly influenced by the properties of the earth’s surface and

the processes in the free atmosphere above. Two principle types of boundary layers

exist: (i) the convective boundary layer (CBL), where heat from the surface of the

Earth creates positive buoyancy flux and instabilities that lead to turbulence, and

(ii) stably stratified nocturnal boundary layer (NBL), where negative buoyancy flux

decreases the turbulence and stable stratified conditions prevail. During daytime at
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mid-latitudes the ABL can reach up to more than 2 km and its usual height at night

is between 50 m to 300 m.

The typical structure of the boundary layer is depicted on Figure 2.1 [20]. The

surface layer consists of the lowest 10% of the boundary layer where the velocity gradi-

ents are higher due to the proximity of the earth surface. This is where buoyancy and

turbulence start. On top lays the mixing layer, usually referred to as the convective

boundary layer, where air parcels and plumes dissipate their energy while rising until

thermal equilibrium is reached. The height of the boundary layer is determined by (i)

free atmosphere wind speed, (ii) buoyancy, (iii) free atmosphere density stratification

and (iv) free atmopshere vertical wind shear. The top of the boundary layer is called

the entrainment zone or capping inversion layer.

Figure 2.1. Diurnal structure of the boundary layer over land (from Wyngaard,
1992)

2.2 Clear air backscattering theory

In 1966 Hardy and Atlas were the first to attribute the detected backscattered

signals from clear air due to Bragg scattering from random fluctuations in the re-
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fractive index [8]. According to Bragg’s theory, within a given volume of refractive

index inhomogeneities, the scattering will be dominated by those inhomogeneities

with scales near L = λ

2 sin( θ
2
)

where, λ is the radar wavelength and θ is the angle

between the incident and scattering directions (equal to 180 degrees for backscatter).

Radar backscatter in that sense is equivalent to narrow band filtering of the space

spectrum of the refractive index fluctuations.

A good estimate of the intensity of fluctuations for random processes caused by

turbulence is the structure function. The structure function of a variable X, where

X could be temperature, refractive index or humidity, at point r is defined as [18]

Dx(r, d) = E[(X(r + d) − X(r))2], (2.1)

where d is the seperation between the two observed points. For an isotropic and homo-

geneous turbulence, the structure function of the refractive index becomes dependent

only on the separation d and is given by

Dn(d) = C2
nd

2

3 . (2.2)

The parameter C2
n is called the structure constant and is a major characteristic de-

scribing the intensity of atmospheric turbulence. The value of C2
n can vary from 10−12

for strong turbulence to 10−17 for very weak turbulence.

To retrieve that spatial turbulent characteristics from time series measurements

at a fixed location the theory applies Taylor hypothesis using

kS(k) = fS(f), f = uk. (2.3)

Here S(k) is the spatial spectrum, k is the spatial wavenumber, S(f) is the temporal

spectrum, and u is the mean wind velocity. In his article from 1969, Ottersten [12]
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was the first to derive the widely used relationship between radar volume reflectivity

and refractive index structure parameter C2
n as

η(λ) ≈ 0.38C2
nλ−

1

3 . (2.4)

In 1941 Kolmogorov developed expression for the energy spectrum of an isotropic,

homogeneous and statistically stationary turbulence [21]. The relationship derived by

Ottersten is valid within the so called inertial subrange of the Kolmogorov spectrum

which extends from scales of a few millimeters to tens of meters within the boundary

layer [6]. The radar operating frequency should be chosen such that it falls within

that region.

Radar backscatter can also originate through Rayleigh scattering mechanism from

birds, insects, and hydrometeors where the size of the scatterers is much smaller than

the radar wavelength. This type of backscatter is strongly frequency dependent with

the received power being proportional to λ−4. In this case the radar reflectivity is

given by [10]

η =
π5

λ4
|K|2Z sin2 χ, (2.5)

where |K|2 ≈ 0.9 for microwave frequencies, Z is the reflectivity factor, and χ is the

angle between the incident and scattered electric field.

Radar backscatter from birds and insects provides data for studying bird migra-

tion patterns and population size. For our purposes, we will look at it as a source

of noise contaminating the much smaller backscattered signal from refractive index

irregularities.

2.3 FMCW radar theory of operation

The transmitted signal in an FM-CW system is a long, coded waveform of band-

width B transmitted over a time period Tp, called sweep time. The duty cycle of
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such radars approaches 100% and the most commonly used frequency coding is a

linear frequency modulation over the bandwidth B. The backscattered signal from

an atmospheric target, usually referred to as an echo is a delayed (by the round-trip

time to target), attenuated, and possibly Doppler-shifted version of the transmitted

waveform. In the receiver, a portion of the transmitted signal is mixed with the echo

to produce an intermediate frequency signal. For a point target this is a sinusoidal

signal of some frequency called the beat frequency. This beat frequency carries in-

formation about the range to the target. For stationary targets, it is related to chirp

bandwidth and sweep time as

R =
cTp

2B
fb (2.6)

where fb = B
Tp

t is the beat frequency, and c is the speed of light.

Figure 2.2 depicts the basics of an FMCW operation. Since there are returns

from many targets within the resolution volume the resulting received signal is a

superposition of individual sinusoidal signals of varying amplitudes and arbitrary

relative phases. Fourier analysis is performed on the received signal and the frequency

information is then converted to range.

In an FMCW radar, range resolution means the ability to separate adjacent spec-

tra as shown in Figure 2.2. The frequency resolution in this case is defined as ∆f = 1
Tp

.

As in pulsed radar, the range resolution of an FM-CW system is dependent only on

the bandwidth of the transmitted signal. Using Equation 2.6 the range resolution is

derived as

∆R =
cTp

2B
∆f =

c

2B
. (2.7)

The sampling frequency of the analog to digital (A/D) conversion determines the

maximum beat frequency that can be detected without aliasing. The latter determines

the maximum range for FMCW radars as

Rmax =
cTp

2B
fbmax =

cTp

2B

fs

2
. (2.8)
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Figure 2.2. FMCW principles

By varying the sweep time Tp and the bandwidth B, the radar can be operated in a

mode suitable for particular atmospheric conditions. For example, to improve range

resolution the chirp bandwidth B should be increased. Keeping all other parameters

the same, this will reduce the maximum range. The maximum unambiguous Doppler

velocity in this case will remain the same. If higher unambiguous velocities are desired

(see discussion in the next section), Tp should be decreased keeping B the same. This

will not affect the range resolution but it will again decrease the maximum range. One

of the advantages of FMCW radars is that they allow for change in range resolution

without change in the peak transmit power for a given sensitivity.
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2.3.1 Doppler measurement and misregistration

The pulse-pair technique may be used as discussed by Chadwick at al. [5] to re-

trieve Doppler information. Using this techinique, the change in phase of the received

signals from two consecutive sweeps carries information about Doppler velocities. For

FMCW radars with a duty cycle less than 100% a distinction should be made be-

tween the sweep time Tp and the slightly longer pulse repetition period (PRT) T . For

a sequence of N uniformly spaced sweeps, the auto-correlation with a time lag equal

to the PRT is given by [14]

R̂(T ) =
1

N

N−1∑

n=1

V ∗(n)V (n + 1), (2.9)

where V (n) and V (n + 1) are the voltage time series of the two consecutive sweeps.

The mean Doppler velocity estimate then is

v̂ = −
λ

4πT
Φ
(
R̂(T )

)
(2.10)

As seen from 2.10, the Doppler velocity estimates are derived from the received signal

sampled with the pulse repetition frequency. In that case, the maximum unambiguous

velocity that can be measured is defined by the radar operating frequency, and the

pulse repetition frequency fp as

vrmax
=

λ

4
fp. (2.11)

For moving targets range and Doppler information are coupled in the received

signal. If rigorous FM-CW signal analysis is carried out, an expression for the radar
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response from a point target at range R0, moving with radial velocity vr, (Doppler

frequency of fd) can be derived as [19]

y(R) =
sin
(

π(fdTp+(R−R0))

∆R

)

π(fdTp+(R−R0))

∆R

, (2.12)

where ∆R is the range resolution. Then the apparent range to target is [19]

Rapp = R0 − fdTp∆R. (2.13)

From (2.13) it is seen that when the target velocity is less than vrmax
, the maximum

misregistration is no more than half a range bin. To maximize signal to noise ratio

(SNR) it is desirable to make the sweep time Tp long but the length of the sweep is

restricted by the coherence of the atmospheric target. The presented theory is based

on the assumption that the target remains coherent (i.e. stationary) during the sweep

interval and produces a constant-frequency sinusoidal echo [19]. The Doppler spectral

width of the echo yields a spread in range through the relationship in Equation 2.13.

The rms spread in range is given by [19]

σR = σfT∆R, (2.14)

where σf is the Doppler spectral width of the echo. To optimize range resolution the

sweep time Tp should be equal to σf in which case the range spreading is equal to the

range resolution.

2.3.2 Radar sensitivity

For bistatic weather radar with Gaussian shaped beams, the received mean power

at the antenna port from a scattering volume in the far field is [14]

Pr =
PtGtGrλ

2θ2∆Rη

512ln2π2R2
Ca, (2.15)
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where, ∆R - radar range resolution

Ca - antenna correction term

Gt,Gr - transmit and receive antenna gain

λ - radar wavelength

θ - half power beamwidth

η - volume reflectivity

R - range to target.

The parameter Ca accounts for the antenna parallax existing in every bistatic

radar and is given by [19]

Ca = exp(−2ln2
d2

θ2R2
), (2.16)

where d is the distance between the centers of the antennas in meters. Using (2.4),

the structure constant can be expressed in terms of the received power as

C2
n =

Pr512ln2π2R2

PtGtGr0.38λ
5

3 θ2∆RCa

. (2.17)

The high sensitivity and range resolution in FMCW radars is achieved by pulse

compression of the transmitted signal in the receiver. The long transmit pulse pro-

duces the high energy needed for good SNR while the pulse modulation provides the

desired range resolution [10]. The Wind Profiler uses a linear FM waveform which is

the most common because it is easy to generate and high bandwidths can be achieved.

Its major disadvantages are the coupling between Doppler and range and pulse en-

velope weighting (required to reduce range sidelobes) which leads to reduction in

SNR.

All pulse compression radars perform some form of matched filtering before de-

tection. In an FMCW radar this filtering, or pulse compression, is obtained by cross-

correlation of the transmitted chirp and the received echo, the result of which is

constant frequency sinusoid for a point target. Because of the finite observation time,
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spectral analysis via DFT compresses this to a sinc function with temporal width of

τ ≈ 1
B

where B is the bandwidth of the chirp. The ratio of the pulse repetition period

T and τ is called compression gain and is given by

Gc =
T

τ
= TB. (2.18)

The energy of the pulse stays the same during compression but after correlation it is

“compressed“ in the main lobe of the sinc function (see Figure 2.2). The power of

the signal after compression then can be expressed as

Pcomp =
PT

τ
= PTB = PGc, (2.19)

where P is the power of the signal before compression.

The noise power doesn’t change during the correlation process since it is not

correlated to the transmitted pulse. Thus, the compression gain must be included

when evaluating radar sensitivity. For a SNR of unity, using (2.17) we can determine

the minimum detectable C2
n as

C2
n(min) =

GcPn512ln2π2R2

PtGtGr0.38λ
5

3 θ2∆RCa

. (2.20)

The compression gain can be accounted for by using Gc in the above equation and

equivalent system noise Pn = kTnBF , where k is the Boltzman constant, Tn is the

antenna temperature (usually observing the cold sky), B is the bandwidth of the

transmitted chirp, and F is the noise figure of the receiver. Another way to account

for the compression gain is to drop Gc from Equation (2.20), but to reduce B in the

system noise equation to the frequency resolution of the sinc function which is equal

to 1/T .
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2.3.3 Integration

The minimum detectable C2
n can be increased by coherent and/or noncoherent

averaging over a period of time thus improving the radar sensitivity. The number of

pulses available for coherent integration is closely related to the coherence time of the

observed target which is inversely proportional to the Doppler spectral width of its

backscatter. It is assumed that during this coherence time, the phase of the target

changes much less than a wavelength. Depending on the wavelength and atmospheric

conditions the coherence time of an atmospheric target can vary from microseconds

to almost a second. The improvement in SNR due to coherent averaging in dB is

I = 10 log(Ncoh), (2.21)

where Ncoh is the number of pulses available for coherent integration. The choice for

noncoherently averaged pulses is dictated by the amount of spatial and temporal detail

needed in the observed phenomena and the time over which these phenomena don’t

change significantly over the spatial extent of the resolution volume. The improvement

in SNR in dB in this case is

Incoh = 10 log
(√

Nncoh

)
, (2.22)

where Nncoh is the number of noncoherently averaged pulses.

Averaging is a powerful tool for increasing radar sensitivity and in favourable

conditions, wind profilers have been reported to detect echoes with a predetection

SNR as small as -30 dB [11].

2.4 Spaced Antenna technique for horizontal wind retrieval

The final design of the UHF FM-CW Wind Profiler will utilize spaced antenna

(SA) technique to measure horizontal winds. Currenly, a large percentage of the wind
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profilers use the Doppler beam swinging (DBS) technique, where the wind vector is

measured in the vertical, and two off-vertical directions to retrieve information about

horizontal winds. The DBS technique assumes uniform wind field over the horizontal

extend of the beam positions, and over the time needed to swing to all beam directions.

SA technique is an alternative to the DBS technique that uses a single vertically

directed transmit antenna and three or more spacially separated receive antennas.

The reduction of volume that is being sampled relaxes the assumption of uniform

horizontal winds. Another advantage of SA technique is that it requires less time for

the measurements as only one beam direction is used.

The concept of the SA technique can be explained if a group of targets is consid-

ered, advecting along the baseline of the receivers at a single range bin. The mean

horizontal wind along the baseline is related to the time lag to the peak of the cross

correlation function τp of the received voltages at the two receivers, and the distance

D between them by [3]

vx =
D

2τp

. (2.23)

This principle was first discussed by Briggs et. al. in the 1950’s [3]. They also

went on to develop the full correlation analysis (FCA) which uses both the autocor-

relation functions and the cross-correlation function between two receivers to retrieve

the mean horizontal wind along their baseline. In 1996, Doviak et. al. derived a

general form of the auto- and cross- correlation functions for a pair of spaced anten-

nas separated by a distance dx along the x axis, and dy along the y axis [7]. The

expression takes into account the degradation of the peak of the cross-correlation

due to winds perpendicular to the baseline, turbulence, antenna spacing and antenna

diameter.-

Two important design considerations are related to the antenna size and spacing.

In the presence of turbulence or wind perpendicular to the baseline, the peak of the

cross-correlation function degrades (and the auto-correlation function narrows). One
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way to alleviate this problem is to use spatial averaging to bring down the variance

of the cross-beam winds measured using SA technique. That is why SA techniques

usually require relatively wide beams along the direction of separation. For that

reason, the Wind Profiler antennas were chosen to have a broad 19◦ beamwidth.

Another configuration that has been used recenly, utilizes a narrow beam transmit

antenna and receive antennas that have wide, overlapping beams [16].

In terms of the spacing between the receiving antennas, it is desirable that the

spacing is as small as possible (limited by the physical size of the antennas) such that

the peak of the cross-correlation function can be well defined. As the antenna spacing

is increased the effect of turbulence, perpendicular and/or vertical winds can strongly

degrade the cross-correlation making the retrieval of horizontal winds difficult.

In its proposed design the Wind Profiler will use one transmit antenna only and

three receive antennas. The received backscatter by the three antennas will be used

to estimate cross-beam horizontal winds along the three baselines by applying a full

correlation analysis (FCA) or another SA algorithm. The Wind Profiler SA antenna

configuration that will be implemented at a later stage is depicted in Figure 2.3.

Figure 2.3. Wind Profiler spaced antenna (SA) configuration. T stands for transmit
antenna and R1, R2, R3 are the three receive antennas. Solid cicles denote physical
apertures, dashed lines denote virtual apertures for SA, and b1, b2, and b3 are the
baselines for the SA wind components.
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CHAPTER 3

SYSTEM HARDWARE DESCRIPTION

Depending on the desired application, FMCW radars for atmospheric research

have different design goals and configurations. This chapter reviews the initial design

of the Wind Profiler and the progress done during the last one and a half years, as well

as provide a detailed hardware description of the system in its current design stage.

Explanation of the particular design choices for the current system configuration and

their implications is also presented.

3.1 System Design

3.1.1 Initial Hardware Configuration

The initial Wind Profiler Design started in May 2006 and was conducted by Prof.

Stephen Frasier and research engineer Pei-Sang Tsai. Table 3.1 lists the basic system

specifications and Figure 3.1 depicts the major blocks of the initial Wind Profiler

design.

The Wind Profiler is an FMCW radar that operates in the 900 MHz ISM frequency

band (902-928 MHz) with a center frequency of 915 MHz. As mentioned earlier, strong

Rayleigh backscatter from insects can contaminated and mask the weak return from

refractive index irregularities. When reducing the radar operating frequency from

S-band (3GHz) to UHF (915MHz) there is 20.7 dB decrease in the RCS for Rayleigh

scatterers of the same size and properties.

The transmitted waveform is a linear FM chirp generated by a Direct Digital

Synthesizer (DDS) with a bandwidth of up to 25 MHz giving a maximum range
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Parameter Value

Transmitter

Center frequency 915MHz
Peak Transmit power 30W
Transmitter type Solid State RF (SSRF)
Sweep bandwidth ≤25MHz
Sweep time 8.333ms
PRF 100Hz

Receiver

Noise figure To be measured
Receiver Gain 74dB
Dynamic range 96dB
Max Range resolution 6m

Antennas

Type Four Parabolic dish
Gain 18dB
Polarization Linear
Front to Back Ratio 22dB

Table 3.1. Initial System specifications

resolution of 6 m. The primary mode of operation is chosen such that the duty cycle

of the radar is 83.3% with a chirp length of 8.3333 ms and PRF of 100 Hz, allowing

vertical velocity of up to ±8.25 m/s to be resolved with no ambiguity. This makes

the radar a powerful tool for vertical wind profiling where turbulent velocities can

reach 3-5 m/s. All radar control signals are generated in a Field Programmable Gate

Array (FPGA) and are user configurable through the computer serial port (design and

implementation done by Albert Genis). Thus, parameters like the PRF and sweep

time are variable allowing for change in the maximum unambiguous Doppler velocity

without compromising on range resolution. The transmit amplifier is a compact solid

state RF power amplifier providing an output power of 30 W.

The receiver chain consists of three identical channels for the three receiving an-

tennas which would allow the SA technique for horizontal wind retrieval to be utilized.

19



T
ra
n
s
m
it
 A
n
te
n
n
a

G
=
1
8
d
B

G
=
2
0
d
B

L
N
A
 G
=
2
3
d
B

F
P
G
A

D
D
S

x
2

x
2

B
P
F
 f
c
=
9
1
5
M
H
z

B
W
=
2
5
M
H
z

S P L I T T E R

S
S
P
A
 G
=
5
0
d
B

~
S
ig
n
a
l 
G
e
n
e
ra
to
r

F
o
=
2
0
0
M
H
z

S
in
e
/T
T
L

~
S
ig
n
a
l 
G
e
n
e
ra
to
r

F
o
=
1
0
M
H
z

L
e
a
k
a
g
e
 C
a
n
c
e
lla
ti
o
n
 M
o
d
u
le

G
=
1
7
d
B

G
=
1
7
d
B

G
=
1
7
d
B

A
/D

C
h
1

A
/D

C
h
2

A
/D

C
h
0

A
u
d
io
 A
m
p
 G
=
4
0
d
B

A
u
d
io
 A
m
p
 G
=
4
0
d
B

B
P
F
 f
c
=
9
1
5
M
H
z

B
W
=
2
5
M
H
z

L
N
A
 G
=
2
3
d
B

B
P
F
 f
c
=
9
1
5
M
H
z

B
W
=
2
5
M
H
z
 

L
N
A
 G
=
2
3
d
B

B
P
F
 f
c
=
9
1
5
M
H
z

B
W
=
2
5
M
H
z

L
N
A
 G
=
2
3
d
B

A
u
d
io
 M
o
d
u
le

1
6
-b
it
 P
o
w
e
r 

D
A
Q

A
u
d
io
 A
m
p
 G
=
4
0
d
B

A
u
d
io
 B
P
F

0
.3
-2
6
k
H
z

A
u
d
io
 B
P
F

0
.3
-2
6
k
H
z

A
u
d
io
 B
P
F

0
.3
-2
6
k
H
z

-2
0
d
B

-2
0
d
B

-2
0
d
B

Figure 3.1. Wind Profiler initial configuration
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The first component in the receiver chain is a 20 dB coupler followed by a cascade

of low noise amplifier, band pass filter, and a 17 dB RF amplifier. The output of

the amplifier cascade is passed on to the RF port of the mixer. The IF signal at the

mixer output is then fed into the audio module consisting of a bandpass (300 Hz to

26 kHz) filter and a 40 dB voltage gain amplifier. The amplified baseband signal is

than sampled by a data acquisition card and stored on a local computer.

The antennas are 1.2 m diameter parabolic dish antennas with dipole antenna

feeds, 19 degree beamwidth and gain of 18 dB. The choice of antennas with such a

broad beamwidth is required for applying the SA technique and for observations at

low altitudes.

Application of the SA technique for horizontal wind retrieval also requires close

promixity of the antennas. This affects the isolation between transmit/receive paths

and can reduce it to unacceptable levels where the transmit leakage saturates the

front end of the receiver. An active cancellation scheme was proposed using a vector

modulator to generate a replica of the leaked signal with an opposite phase that would

be coupled to the received signal before the low noise amplifier (LNA) in the receiver

chain.

3.1.2 Hardware Modifications and Upgrade

The Wind Profiler configuration has undergone a lot of changes in the last year

and a half. Table 3.2 list all the changes to the old radar specifications and Figure 3.2

represents the block diagram of the Wind Profiler in its current stage. All blocks that

have been added and/or modified in the system are indicated by a different color.

Previously, all power supply components (low-noise linear supplies) were arranged

within one enclosure. For better isolation and reducing the ground coupled low-

frequency noise, the high power solid state amplifier is now housed in a different

enclosure and is powered by a separate A/C power line. The vector modulator can-
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Parameter Value

Transmitter

Sweep time Mode 1: 6.25 ms
PRF Mode 1: 100 Hz

Receiver

Noise figure 3.1 dB
Receiver Gain 114 dB
Min Detectable Signal -180 dBm

Antennas

Antenna Spacing 2.75m
Isolation ≈ 70dB

Table 3.2. Current system specification changes

cellation loop was implemented along with a calibration loop consisting of a 2 µs bulk

acoustic wave (BAW) delay line which allows for system calibration and monitoring.

A new IF filter was designed and more IF gain added to the system to guarantee that

the desired signal power levels are well above the quantization noise floor of the A/D

converter.

Prior to modification, the audio module was located in close proximity to the

FPGA and the ribbon cables carrying the radar digital control signals were passing

right below its terminal board. This caused spurious digital signals to be radiatively

coupled to the received signal. The whole audio module is now placed close to the

mixer, in a different box, within a solid metal enclosure which significantly reduced

all spurious signal interference.

Two antennas - one transmitting and one receiving were mounted on the back

of a truck making the whole system mobile and allowing for deployment at multiple

locations. Each of the current radar subsystems, as well as the challenges faced during

their integration into the Wind Profiler are discussed in greater detail in the following

sections.
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3.2 Control and Transmit subsystem

The communication between the radar operator and the Wind Profiler is es-

tablished through a serial interface between the local computer and the Field Pro-

grammable Gate Array (Altera Cyclone II EP2C20 FPGA) which generates all radar

control signals. The parameters needed for that are stored in a configuration file

(fmcw.conf) and can be modified by the radar operator at any time (see Figure 3.3).

The initial FPGA design developed by Albert Genis generated all clock signals based

on flip-flop counters [2]. The modules generating the different control logic signals

did not share a common reference clock signal. That approach is usually inflexible to

modification and the design style is often unstable . It also leads to timing skew which

is unacceptable for radar systems where synchronization is of utmost importance.

This, and the need for new vector modulator control signals required a completely

new design based on synchronous counters. Synchronous counters also utilize flip-

flops, but here, each state is clocked simultaneously by a common clock signal. Most

hardware-based synchronous counters use logic gates that control the data flow be-

tween each state. Synchronous counters can also be implemented using hardware

finite state machines which allow for smoother transitions and faster design mod-

ification. Currently, all Wind Profiler control signals are generated using a finite

state machine. The input to the state machine is controlled by the user through the

serial interface and each output state corresponds to a desired control logic signal.

This hardware design approach minimizes synchronization problems and makes the

addition and/or modification of the control signals easy.

The transmitted chirp is generated by a 10-bit Direct Digital Synthesizer (DDS)

from Analog Devices (AD9858). It receives the parameters necessary for frequency

sweep generation (see Figure 3.3) from the control subsystem . The board uses an

external 800 MHz clock referenced to the 10 MHz FPGA clock.

23



G=20dBLNA G=23dB

FPGA

DDS x2 x2

BPF fc=915MHz

BW=25MHz

S

P

L

I

T

T

E

R

SSPA G=50dB

S

P

L

I

T

T

E

R

G=17dB

G=17dB

G=17dB

Vector

Modulator

2 µs Delay 

Line

Vector

Modulator

Vector 

Modulator

SPLITTER

A/D

Ch1

A/D

Ch2

A/D

Ch0

Audio Amp G=40dB

Audio Amp G=40dB

Audio Amp G=40dB

BPF fc=915MHz

BW=25MHz

LNA G=23dB

BPF fc=915MHz

BW=25MHz 

LNA G=23dB

BPF fc=915MHz

BW=25MHz

LNA G=23dB

~ Signal Generator

Fo=200MHz

Audio Module

-20dB

Transmit Antenna

G=18dB

Sine/TTL ~ Signal Generator

Fo=10MHz

16-bit Power DAQ

16 channel 

Analog Output 

Card

To Vector 

Modulator

AO Control 

Singals

Audio Amp G=40dB

Audio BPF

5kHz-26kHz

Audio BPF

5kHz-26kHz

Audio Amp G=40dB

Audio BPF

5kHz-26kHz

Audio Amp G=40dB

-30dB -10dB

-20dB

-20dB

-20dB

-50dB

F
ig

u
r
e

3
.2

.
U

H
F

F
M

-C
W

W
in

d
P

rofi
ler

b
lo

ck
d
iagram

24



The internal analog mixer combines the clock signal with the generated chirp

centered at 115 MHz to produce the desired product at 915 MHz at the output of

the DDS. The undesired mixing products are then filtered, and the signal is passed

through a cascade of amplifiers (PA991C with G = 23 dB and LNBDA from Wenzel

Associates, Inc with G = 20 dB) which guarantee the necessary power levels to the

mixers in the receiver chain and the solid state RF amplifier. A 4-way splitter is

used to split the transmitted signal to the three LO inputs of the mixers and the

RF high power amplifier. The high power amplifier is a linear power solid state RF

amplifier from OPHIRrf with a gain of 50 dB and a 1 dB compression point set at

30 W (44.8 dBm). The through port of a 20 dB directional coupler delivers the output

of the amplifier to the antenna and couples part of it to a 2-way splitter that sends

copies of the signal to the calibration and vector modulator loops.

Figure 3.3. FPGA control signals generation
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3.3 Calibration Loop

Implementation of a calibration loop in a radar system allows for continuous mon-

itoring of system performance and gives a reference point for evaluating the radar

sensitivity. For this purpose, a bulk acoustic wave (BAW) delay line, with an effec-

tive delay of 2 µs, was purchased from Teledyne Electronic Technologies. A portion

of the transmitted chirp, attenuated to a level that is safe for the device serves as its

input. The output of the delay line is further attenuated and combined with the ac-

tive cancellation signal from the vector modulator (described in the following section)

in a power combiner. The output of the combiner is then coupled into the receiver

chain through a 20 dB coupler (see Figure 3.2). The delayed chirp produces a signal

with a beat frequency fb at the mixer’s IF port. This corresponds to a radar range

of 300 m. Some of the important delay line specifications are listed in Table 3.3.

Parameter Value

Center frequency 915 MHz
Bandwidth 25 MHz
Time Delay 2.000 ± 0.012µs
Insertion Loss at 915 MHz 11.5 dB
Triple Travel Suppression 11 dB min
Peak Power 100 mW

Table 3.3. Delay line specifications

One of the important performance characteristics of the delay line is the triple

travel signal suppression. To analyse that performance an analytical model for the

output signal of the delay line is derived below. That output signal is a summation

of the nominal 2 µs delayed chirp and the triple travel chirp and can be expressed as

S(t) = (A − B) sin

(
2πB

Tp

t2 + 2πf1t

)
+ B sin

(
2πB

Tp

t2 + 2πf1t

)

+B sin

(
2πB

Tp

(t − τ)2 + 2πf1(t − τ)

)
, (3.1)
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where f1 is the chirp starting frequency and τ is the time delay difference between

the nominal and triple travel signal which in the case of this delay line is equal to

4 µs, A is the amplitude of the nominal 2 µs delayed chirp, and B is the amplitude

of the triple travel chirp. The worst case suppression for the delay line is specified to

be 11 dB, suggesting that B is much smaller than A. Looking only at the last two

terms and using a well known trigonometrical identity we get

S(t) = B sin

(
2πB

Tp

t2 + 2πf1t −
2πB

Tp

τt

)
cos

(
2πB

Tp

τt

)
. (3.2)

The effect on the first term is a shift in the center frequency of the chirp by

2πB
Tp

τ . The second term leads to the chirp being modulated by a sinusoidal signal of

frequency Bτ
Tp

. This modulation can be seen on Figure 3.4 which shows the S21

scattering coefficient of the delay line for a small portion of the chirp frequency

spectrum between 914 MHz and 916 MHz. The amplitude of that sinusoidal signal

carries information about the available triple travel signal supression in the Wind

Profiler delay line, which was found to be about 16 dB.

Figure 3.4. Measured delay line insertion loss
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The effect of the delay line will be to produce an equivalent of two targets - the

first one centered at fb corresponding to a range at 300 m and another one at 900 m

with an equivalent power about 16 dB below the first one.

Considering the equivalent target at 300 m, and using the radar equation, a rela-

tionship between the received power through the delay line and its radar reflectivity

can be derived as [19]

Pcal =
PtGAeffηcal∆Rπθ2

(4πR)2Lant8ln2
=

Pt

Lcal

, (3.3)

where Lant is the total loss in the antenna feedlines, and Lcal is the loss through the

calibration path. For Gaussian shaped beams, Gθ2 = 16ln2, giving an equivalent

volume reflectivity of the calibration target of

ηcal =
8πR2Lant

Aeff∆RLcal

. (3.4)

The received reflectivity as a function of distance can be expressed as

ηr =
Prηcal

Pcal

. (3.5)

Using (3.5) in (2.4) the relationship between the received power Pr and the structure

constant C2
n can be expressed as

C2
n =

λ
1

3 ηr

0.38
=

λ
1

3 Prηcal

0.38Pcal

. (3.6)

The delay line is also very useful for comparing theoretical and real system per-

formance. Knowing the volume reflectivity of the equivalent target and the measured

noise floor of the system, it is immediately known what is the minimum detectable

signal for a given SNR.
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3.4 Leakage Cancellation Loop

Application of spaced antenna (SA) techniques for horizontal wind retrieval re-

quires antennas with broad beams mounted in close proximity to each other. This

can result in inadequate isolation between the transmit and receive antennas such

that the transmit leakage saturates the receiver front end. The measured isolation

between the Wind Profiler antennas is ≈ 70 dB. The mixer used (see Figure 3.2) is

a high power mixer with 1 dB compression point of 9 dBm. For the given isolation

it is the first component to saturate in the receiver chain. Hence, active leakage

cancellation is required which guarantee the linear operation of the mixer - critical

for reliable Doppler measurements. To achieve this goal, a RF vector modulator was

purchased from Analog Devices (AD8340). The operation principles of the modulator

are depicted in Figure 3.5.

The vector modulator receives a signal at its input which is split into in-phase

(I) and quadrature (Q) components. Variable attenuators receive control signals and

attenuate the I and Q components relative to each other such that the output signal

is a replica of the input with the desired new magnitude and phase. The modulator

uses Cartesian single-ended or differential control signals to control the attenuation.

For better noise performance, it is recommended to use the vector modulator control

inputs in differential mode. The relationship between the desired gain and phase, and

the corresponding control signals is

Gain =

√(
VBBI

VO

)2

+

(
VBBQ

VO

)2

, (3.7)

Phase = arctan

(
VBBQ

VBBI

)
, (3.8)

where VO = 500 mV is the baseband scaling constant and VBBI , VBBQ are the dif-

ferential I and Q control baseband voltages, respectively. The differential full scale

range of VBBI and VBBQ is ±500 mV. The maximum gain of unity is achieved if the
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A
→

A

Figure 3.5. Vector modulator block diagram and operating principle

differential voltage is equal to +500 mV or -500 mV. So with a common mode level

of 500 mV,VBBI and VBBQ will each swing between 250 mV to 750 mV.

The signal generation and control of the cancellation loop is depicted on Figure

3.6. A software program generates the differential control signals VBBI and VBBQ,

and passes these values via a 96-pin cable to a 16-bit 16-channel D/A converter

(PD2-AO-16/16 - PCI Analog Output Data Aquisition Board from United Electronic

Industries). The trigger and sampling clock for the board are generated in the FPGA

and are synchronized with the radar PRF. The analog differential control signals are

then delivered to the vector modulator control signal inputs for each of the three

channels.
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Figure 3.6. Cancellation loop control signals

Figure 3.7 shows the part of the radar block diagram that represents the hardware

implementation of the loop. Right before the transmit antenna, part of the transmit-

ted chirp is coupled through a 20 dB coupler into a 2-way splitter that splits it equally

to the calibration and cancellation loops. A 3-way splitter delivers the signal to the

input of the vector modulator for each channel. Appropriate attenuation is added to

ensure that the input level is within the safe operating range of the modulators. The

differential control signals from the Analog Output Board are fed into the control

signal inputs of the modulator. A total of 6 differential signals are required for the

three vector modulators. The control signals are computed such that the output of

the vector modulator is a replica of the transmitted chirp that is opposite in phase

to the antenna leakage and 20 dB larger than it in magnitude. The first component

in the receiver chain after the antenna is a 20 dB coupler used to couple the vector

modulator output to the received signal, thus cancelling the leakage and assuring the

linear operation of the mixer.

The antenna leakage can be expressed as

S(t) = A sin
(
αt + βt2 + φ

)
, (3.9)

where A is the leakage amplitude, α = 2πfstart and β = 2πB
Tp

. Depending on the

length of the coupling path the leakage is delayed by some time τ relative to the
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Figure 3.7. Cancellation loop hardware design

vector modulator input. The latter then can be written as

Vin(t) = B sin
(
α(t + τ) + β (t + τ)2 + φ + φ0

)
, (3.10)

whereB is the amplitude and φ0 is the phase added by the components on the vector

modulator path. For leakage cancellation, the required output of the vector modulator

should be

Vout(t) = A sin
(
αt + βt2 + φ + π

)
. (3.11)

Expanding the equation for the vector modulator input we get

Vin(t) = B sin
(
αt + βt2 + φ + ατ + βτ 2 + φ0 + 2βτt

)
. (3.12)
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The first three terms represent the phase of the leakage. The required phase change

in the vector modulator is then given by

Ψ(t) = −
(
2βτt + αt + βτ 2 + φ0 − π

)
. (3.13)

It is obvious that the needed phase change is a function of time. This requires precise

dymanic control of the vector modulator which has to be synchornized at each chirp

to achieve reliable cancellation. Such precision is very hard to achieve. If the input to

the vector modulator is delayed by the same time delay, then τ = 0 and the required

phase change becomes

Ψ = −φ0 + π. (3.14)

Clearly, now the required phase change is independent of time and no dynamic control

of the vector modulator is needed. Allignment of the two chirps is achieved by adding

the required length of cable at the input of the vector modulator, its length dependent

on the length of the antenna feed lines in the particular deployment conditions.

The maximum cancellation that can be achieved depends on (i) how well the

leakage and the input to the vector modulator are alligned in time (assuming the delay

within the vector modulator itself is insignificant) and (ii) how small the amplitude

error between the two signals is. Misallignment in time corresponds to the case where

dymanic phase change of the vector modulator input is required. Using a constant

phase change control in the vector modulator leads to only particular frequiencies

within the chirp being well cancelled while for some other frequencies the two chirps

may add constructively (see Figure 3.8). Hence, it is critical that the leakage and the

vector modulator input chirps are alligned in time as best as possible.

Amplitude errors between the transmitter leakage and the vector modulator out-

put also deteriorate the cancellation loop performance. To maximize cancellation the
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error needs to be as small as possible. The maximum cancellation (see Figure 3.8)

that can be achieved is

Cmax, dB = Pleakage − Pminerror. (3.15)

For a desired cancellation, the smaller the power in the leakage is the more rigid the

constraints are for the maximum amplitude error that can be tolerated. These errors

are due to the inaccuracy of the vector modulator, the instruments used to measure

the power levels and in a deployment scenario, the backscattered power from very

close targets that superimposes on the leakage.
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Figure 3.8. Effect of time and amplitude error on the achieved cancellation

3.5 Receiver subsystem - RF section

The receive circuitry consists of three identical RF signal paths for the three

receive channels. The received signal is an addition of atmospheric echoes, ground

clutter, and transmitter leakage. The leakage, which can be orders of magnitude

larger than the echoes, and can easily saturate the front end of the receiver, is cancelled
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immediately before the low noise amplifier (LNA) as described in the previous section.

The radar calibration signal from the delay line is also coupled into the receiver chain

at that point.

The noise figure of the system is primarily determined by the noise figure of

the first components in the receiver chain. To ensure a good noise figure, the first

component in the receiver is usually a low noise amplifier. In the case of the Wind

Profiler, the noise figure of the RF section is given by

Freceiver ≈ Lc + Lc (FLNA − 1) +
(Lf − 1) Lc

GLNA

+
(Famp − 1) LfLc

GLNA

, (3.16)

where Lc is the coupler insertion loss and Lf is the filter insertion loss, FLNA is the

LNA noise figure and Famp is the noise figure of the 17 dB amplifier in the RF section.

The attenuation of the antenna feed lines should be added to the noise figure given

by (3.16) to give the true receiver noise figure as

Ftotal = Lcable + FreceiverLcable. (3.17)

The coupler in the Wind Profiler is a 20 dB coupler from Narda Microwave East

with insertion loss of Lcoupler = 0.3 dB. The power level of the delay line signal

which is coupled into the receiver through the coupler should be such that no extra

thermal noise from the transmitted signal gets coupled into the receiver. The LNA is

a Phoenix PA911C with a noise figure of 0.9 dB. The next component in the chain is

a ceramic band pass filter (BPF) from Lark Engineering with a bandwidth of 25 MHz

and insertion loss of 2.5 dB. The received signal is then amplified again by a 17 dB

amplifier from Mini Circuits (ZJL-4HG+) with a noise figure of 5.01 dB before being

passed on to the mixer. With the given specification of the components on the RF

chain the calculated Freceiver is 1.28 dB.
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The choice of the mixer is dictated by (i) how strong the transmit leakage is and,

(ii) the receiver gain of the RF section. The Wind Profiler utilizes high power mixer

from Mini Circuits (ZEM-4300MH+) with a 1 dB compression point of +9 dBm.

The mixer has a LO power level of +13 dBm. For reliable performance, the LO level

should vary no more than ±3 dB from its specified value. For the Wind Profiler

operating frequency range, the mixer insertion loss varies from 6 to 8 dB depending

on the LO input level.

3.6 Receiver Subsystem - IF section

The IF section of the receiver in its current stage consist of an audio module

(audio filter and a cascade of audio amplifiers) and a data acquisition system.

To determine if the IF gain was adequate, analysis was undertaken to determine

if the expected backscattered power from the phenomena desired to be observed

utilizes the data acquisition dynamic range. The data acquisition card in the Wind

Profiler is a 16-bit PowerDAQ PD2-MFS-4-500/16 from United Electronic Industries,

Inc. The specified maximum input voltage is ±10 V corresponding to a maximum

power of 30 dBm (monotone). The dynamic range of the DAQ is 96 dB setting its

quantization noise floor at -66 dBm. Therefore, to ensure detection of the observed

phenomena, the power at the DAQ input should exceed -66 dBm.

Typical values for the structure constant C2
n vary from 10−15 m

−2

3 for weak turbu-

lence to 10−13 m
−2

3 for intensive turbulence within the convective boundary layer. The

received power from refractive index fluctuations at the receiver input can be found

using Equation (2.15). Figure 3.9 depicts the mean received power at the receiver in-

put for the different turbulent intensities as well as the data acquisition quantization

noise floor referred to the receiver input. In its initial design configuration the Wind

Profiler could not detect the desired backscatter and an increase in the receiver gain

was needed.
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The audio amplifier (VA 1040-2) in the audio module of the receiver is a 40 dB

voltage gain amplifier from AVENS Signal Equipment Corp. Another one of the same

kind was cascaded with the existing audio module (see Figure 3.2) to bring the total

receiver gain to G = 114 dB, and the minimum detectable signal at the receiver input

to -180 dBm. This ensured that the data acquisition could safely and accurately

sample the desired signal.
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Figure 3.9. Received power and minimum detectable signal

3.6.1 IF Filter Time-Domain Response

The audio filter in the receiver chain is a bandpass filter with a 25.7 kHz bandwidth

between 300 Hz and 26 kHz from AVENS Signal Equipment Corp. It is an eight order

Butterworth filter designed for steep roll-off and flat response within the passband.

To reject the strong leakage signal which occurs at a frequency close to DC, the filter

is the first component in the audio module.

The Wind Profiler is not a true FMCW system. Time is needed for the data to

be transferred from the buffer to the internal registers of the DDS requiring sweep

times slightly shorter than the pulse repetition period (PRT). The abrupt steps from
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sweeping to reset and sweeping again and the steep cut off of the audio filter can lead

to undesirable filter ringing in the time domain. In the Wind Profiler where the audio

filter is the first component in the IF section and the IF gain is 80 dB such ringing

can exceed the data acquisition dymanic range of ±10 V.

To study the filter ringing, the system was terminated at the antenna input and

an oscilloscope measurement was taken right after the filter. The sweep time was

8.333 ms and the PRF was 100 Hz. The filter ringing of the AVENS filter is depicted

on Figure 3.10 along with the DDS trigger. The amplitude of the AVENS filter ringing

exceeds 50 mV for the duration of the sweep and after 80 dB gain saturates the data

acquisition. This introduced the need for a new IF filter design.

Figure 3.10. AVENS filter ringing effect

3.6.2 IF Filter Design

The major filter design considerations are (i) ensuring significant attenuation of

the leakage signal, (ii) achieving trade off between filter ringing and desired minimum

observable heights, and (iii) avoiding aliasing. In the worst case, the leakage cancel-

lation should be such that the mixer is not saturated. To ensure its linear operation,

the power levels at its RF port should be less than its 1 dB compression point of
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9 dBm. For the IF gain of 74 dB (accounting for the mixer insertion loss of 6 dB) a

leakage signal of power 9 dBm, has power of about 83 dBm at the DAQ input. The

maximum power before DAQ saturation is 30 dBm. Thus, the required attenuation of

the leakage beat frequency in the audio filter is about 53 dB. For better cancellation

this value can be smaller.

A filter with a gentler roll-off than the AVENS filter will significantly reduce the

ringing problem but it will also attenuate the low frequencies in the received spectrum

corresponding to targets an near ranges. One of the primary design goals of the Wind

Profiler is to be able to observe boundary layer processes at low altitudes up to few

hundred meters. For a given roll-off, in order to observe phenomena closer to the

radar, a decrease in the sweep time is needed (see Equation 2.6). On the other hand,

this increases the leakage beat frequency which has to be attenuated by the desired

amount to avoid DAQ saturation. A trade off is needed between the needed ringing

reduction, leakage cancellation, and desired minimum observable heights. Table 3.4

lists the currently chosen different modes of operation and Figure 3.11 shows the beat

frequency versus height for each. For a fixed, low cut-off frequency of the filter, the

first mode is desirable during observation of the low boundary layer, while the second

is more suitable for convective boundary layer (CBL) observations. In this case, the

maximum observable height reaches more than 2 km but the information at the lower

altitudes is lost.

Mode Sweep PRF Duty Bandwidth Maximum Measured

Time Cycle Unambiguous Leakage fb

Velocity

1 6.25 ms 100 Hz 62.5% 25 MHz ±8.25 m/s 298 Hz
2 12.5 ms 60 Hz 75% 25 MHz ±4.95 m/s 149 Hz

Table 3.4. Current Wind Profiler modes of operation

To address all of the above, a high pass and a low pass filter were designed and

cascaded. The high pass filter is a third order Butterworth filter with a cut-off
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frequency at 5 kHz. A steeper response for the low pass filter is needed to ensure

there is no aliasing. The low pass filter is a ninth order Butterworth filter with a

cut-off of 26 kHz. The filter schematics, designed values and frequency response of

the high and low pass filter are shown in Figure 3.12.
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3.7 Expected System Performance

This section addresses the expected system performance given the current hard-

ware configuration described in this chapter. It traces the desired signal and noise

from the receiver front end to the data acquisition and discusses issues regarding

available pre- and post-processing SNR, dynamic range and radar noise floor.

At the input of the Wind Profiler receiver the signal consists of atmospheric echoes,

clutter and noise. The power in the returned echoes depends on the turbulence

intensity which is related to the structure constant and can be found using Equation

(2.15). The antenna parallax becomes negligible after 50 m of height and is not

accounted for in the following calculations. Typical values of the structure constant

for the convective boundary layer lie in the range between 10−15 to 10−13 m
−2

3 . The

total noise power is given by

Pn = kTBF = −174dBm/Hz + 10 log(25.106) + 3.1 = −96.9dBm, (3.18)

where B is the RF radar bandwidth of 25 MHz and F is the radar noise figure (the

noise figure measurements are discussed in Chapter 4). Figure 3.13 represents the

received power from turbulence of the typical values specified above and indicates the

total noise power, the minimum detectable signal and the DAQ dymanic range.

At the DAQ input the desired signal is downconverted to IF band, filtered and

amplified by the total receiver gain. The received power at near ranges is affected by

the frequency response of the audio filter. The total noise power at the DAQ input is

Pn = kTBafFG, (3.19)

where Baf is the audio filter bandwidth of 21 kHz, F is the total radar noise figure

and G is the total receiver gain of 114 dB. The measured RF noise figure is 3.1 dB

(see Chapter 4). The mixer in the receiver chain is a double side-band mixer which
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adds another 3 dB to the noise figure. Thus, the total noise power at the DAQ input

is

Pn = −174dBm/Hz + 10 log(21000) + (3.1 + 3) + 114 = −10.7dBm. (3.20)

Figure 3.14 carries the same information as Figure 3.13 referred to the DAQ input.

As described in Section 2.3, the pulse compression or cross correlation in the Wind

Profiler is done in hardware when the received echo from a particular range bin is

mixed with a portion of the transmitted signal, thus confining its power within a

bandwidth of B = 1
T

(see Figure 2.2). When the radar is operating in Mode 1 (see

Table 3.4), T is 10 ms and B is 100 Hz. The post processing scenario is depicted on

Figure 3.15.

During the post processing, an FFT analysis is performed on the received data

and the total noise power is spread at all frequencies up to fs

2
, where fs is the sampling

frequency. The total noise power within the 100 Hz bandwidth is
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Figure 3.14. Signal power and noise at the DAQ input

Pn = kTBFG = −174dBm/Hz +10 log(100)+(3.1+3)+114 = −33.9dBm. (3.21)

The ratio of the signal to this noise power will define the single pulse SNR of each

range bin. The SNR is further increased by coherent and/or noncoherent averaging.

The pulse compression gain in the Wind Profiler is equal to 53.98 dB (see Equation

2.18) and it represents the combined effect of noise bandwidth reduction from the RF

to the narrow audio bandwidth and the matched filtering, which after the FFT further

“compresses“ the signal to a 1
T

bandwidth, where T is the pulse duration.
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Figure 3.15. Signal power and noise after FFT
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CHAPTER 4

LABORATORY HARDWARE EVALUATION

Following the changes to the hardware design of the Wind Profiler outlined in the

previous chapter, a series of laboratory tests were done to evaluate the system per-

formance. The nature of the measurements, their setup and the results are described

here.

4.1 Transmit Power Measurements

The set up to measure the transmit power is depicted in Figure 4.2. The instru-

ment used for the power measurements was the E4407B ESA-E Series Spectrum Ana-

lyzer from Agilent Technologies, with an absolute amplitude uncertainty of ±0.5 dB.

The high power RF amplifier was operated at its 1 dB point ensuring full utilization of

its gain while maintaining sufficient linearity. The S21 parameters for the cables, high

power coupler, and attenuators were measured separately over the chirp bandwidth

and compensated in the power measurement. The expected output power is 30 W

(44.78 dBm) and the results from the measurement are shown in Figure 4.1. The

chirp flatness over the bandwidth was also measured and was found to be better than

0.4 dB. This result is also shown on Figure 4.1 along with the errorbars depicting the

expected Spectrum Analyzer accuracy.

To ensure consistency, the transmit power was also measured with a digital os-

cilloscope (MSO6104A) and power meter (N1911A) from Agilent Technologies. The

results from these measurements at the center frequency of 915 MHz and the expected

instrument accuracies are listed in Table 4.1.
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Figure 4.1. Transmit chirp power spectrum and flatness

Figure 4.2. Transmit power measurements setup

4.2 Receiver Gain Measurements

4.2.1 RF Section Gain Measurements

The Wind Profiler RF section gain (up to the mixer) was measured as a function

of the RF frequency across a bandwidth of 25 MHz. The E8257D PSG Analog Signal

Generator with an amplitude precision better than ±0.02 dB was used to feed a

monotone sinusoid with known power into the receiver, and the output was measured

with the E4407B spectrum analyzer from Agilent (see Table 4.1). The frequency step
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Frequency, MHz Instrument Accuracy, dB Transmit Power, dBm

915 E4407B ±0.5 44.6
915 MSO6104A ±0.53 44.8
915 N1911A ±0.05 44.6

Table 4.1. Center frequency transmit power measurements

of the measurement was 1 MHz. The RF section gain for the three receive channels

is plotted on Figure 4.3.
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Figure 4.3. Receiver RF section gain

4.2.2 IF Section Gain Measurements

The IF section gain is dictated by the audio filter insertion loss, and the gain of

the cascaded audio amplifier pair. The insertion loss of the newly designed audio

filter was measured by injecting a single tone with known power level (E8257D) and

measuring the output power level on the MSO6104A oscilloscope. The frequency on

the E8257D was swept from DC to 60kHz. The audio filter response is depicted in

Figure 4.4, along with the low frequency slope of the response. The cut off (3 dB)

frequency is at the designed value of 5 KHz. The attenuation of the leakage signal
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(see Table 3.4) is at least 60 dB for all modes, and the filter insertion loss within the

pass band is less than 0.5 dB.
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Figure 4.4. New audio filter frequency response

Ringing in the new filter was also measured with the receiver input terminated

and the result is shown in Figure 4.5. It is seen that the ringing has been reduced

significantly compared to the old AVENS filter. Strong ringing exists only within the

first 200 µs. The amplitude of this ringing in not within the DAQ dynamic range

but in this case this is not an issue because the ringing is mostly discarded by the

envelope windowing in the post processing.

The gain in the IF section is provided by the two 40 dB amplifiers from AVENS

Signal Equipment, Inc. These are DC-coupled voltage gain audio amplifiers with a

supply voltage of ±15 V. To avoid a DC offset at the amplifier input, a 20 µF capacitor

was added in series between the filter and the amplifiers. The direct cascading of the

audio amplifiers created oscillations at the output with a frequency of 500 kHz with

an amplitude that saturated the data acquisition. These oscillations were created

due to formation of an oscillator loop consisting of the high gain amplifier pair and

the DC bias lines. The addition of 47µF bypass capacitors on all power supply lines

eliminated these oscillations. The total gain of the IF section was measured over the

IF bandwidth and the result is shown in Figure 4.6.
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Figure 4.5. New audio filter ringing effect

Considering the gain measurements of the RF and IF section and including the

conversion loss of 6 dB in the mixer, the overall gain of the Wind Profiler receiver is

about 114 dB.

4.3 Noise Figure Measurements

The noise figure in a receiver is primarily determined by the first components in

the receiver chain. The noise figure of the Wind Profiler RF section was measured

using the Gain method, and Y-factor method.

To measure the noise figure using the gain method, the input of the device under

test is terminated with a 50 Ω load, and the output power density is measured on a

spectrum analyzer. The noise figure (NF) then, is given by

NF = Pnd + 174dBm/Hz − G, (4.1)

where Pnd is the measured output noise power density and G is the gain of the device

under test. To get a stable and accurate reading from the spectrum analyzer, the ratio

of the RBW (resolution bandwidth) and VBW (video bandwidth) is recommended
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Figure 4.6. Receiver IF section gain

to be 0.3 [1]. The gain method is easy to setup and can cover a wide frequency band-

width. It is primarily limited by the noise floor of the spectrum analyzer itself. The

accuracy of the measurement is determined by the amplitude accuracy of the analyzer

and by the difference between the assumed and the actual resolution bandwidth.

Measurement of the noise figure using the Y-factor method requires a calibrated

noise source. These sources can output wideband noise at two different noise temper-

atures, Thot and Tcold when turned on and off. They are specified by the excess noise

ration (ENR) given by

ENR = 10log

(
Thot

Tcold

)
. (4.2)

Turning the noise source on and off, the change in the output noise power density

is measured with a spectrum analyzer. The noise figure can then be found using

NF = 10 log

(
10

ENR
10

10
Y
10 − 1

)
, (4.3)

where ENR is the standard noise figure and Y is the difference between the output

noise power density when the noise source is on and off. The Y-Factor method is
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more accurate for small noise figure values compared to the gain method. For the

Y-factor measurement, the HP346B head was used which requires a supply voltage

of 28 V. Its ENR at 1 GHz is 15.05 dB and the ENR at any other frequency can

be found by extrapolating. The setup used for the two noise figure measurements is

depicted on Figure 4.7.

Figure 4.7. Noise figure measurement setup

The noise figure of the RF section was measured over the chirp bandwidth with

1 MHz step. At the center frequency, the measured noise figure was 1.31 dB with

the gain method, 1.42 dB with the Y-factor method. These are in good agreement

with the theoretically calculated value of 1.28 dB (see Section 3.5 Equation 3.16).

The attenuation of the 4 m receive antenna feed line is added to the measured noise

figure, to give the total noise figure of the RF section. The results, along with the

confidence interval set by the expected spectrum analyzer accuracy are shown on

Figure 4.8.

To verify the system noise performance, the Wind Profiler was terminated at the

receiver input as well as the coupling port for the calibration and vector modulator

51



900 905 910 915 920 925 930
1.5

2

2.5

3

3.5

4

4.5

5

Frequency, MHz

N
oi

se
 F

ig
ur

e,
 d

B

 

 
Gain Method
Y−Factor Method

Figure 4.8. RF section noise figure

signals. Data was collected and processed in the following manner: (i) the time series

was read from the specified channel, (ii) a Hanning window was applied to the time

series of each profile, (iii) 100 profiles were stored in a matrix, FFT performed and

the mean removed, (iv) the matrix was multiplied by its conjugate and the average of

the power plotted. Figure 4.9 shows the power spectrum of the averaged profiles. It is

seen that the noise floor is at -25.6 dBm per 100Hz of resolution bandwidth instead of

the expected value of -33.9 dBm (see Section 3.7). After a series of tests, the source of

that excess noise was found to originate in the AVENS audio amplifiers. The internal

noise of the amplifiers referred to their input is specified to be 50 µV RMS for the

bandwidth of DC to 100 kHz. This sets the device noise floor at -123dBm/Hz. The

total gain of the audio amplifiers is 80 dB giving a noise power density at the DAQ

input of -43dBm/Hz. For the resolution bandwidth of 100 Hz that is a noise power

density of -23 dBm. The 2.4 dB difference between that value and the value from the

measurement is due to the windowing that is performed on the data before the FFT.
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Figure 4.9. Wind Profiler received noise power spectral density

The high gain in the IF section requires a procurement of a new ultra low noise

audio amplifiers. An alternative to that would be to increase the gain of the RF

section, thereby increasing the signal level to the audio amplifier input and reducing

the IF section gain. However, the RF gain is limited by transmitter leakage concerns.

4.4 Delay Line Measurements

A 2 µs acoustic delay line was integrated in the Wind Profiler hardware to form

an internal calibration loop for system monitoring. The calibration loop is described

in Section 3.3 and the delay line specification are given in Table 3.3. The amplitude

modulated delayed chirp from the calibration loop produces a sinusoidal signal of

frequency fb corresponding to the delay in the delay line, and another sinusoidal

signal corresponding to the first sideband of the amplitude modulation at the mixer

IF port.

The transmitted chirp is coupled into a splitter through the 20 dB coupler in

the transmitter chain. The splitter splits the signal to the vector modulator and the
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calibration loop. A cascade of 30 and 10 dB attenuators attenuates the calibration

loop signal before feeding it into the delay line input. The nominal insertion loss of the

delay line is 11.5 dB. The triple travel signal of the delay line amplitude modulates

the chirp. Figure 4.10 shows the input chirp to the delay line and its amplitude

modulated output in the time domain.

Figure 4.10. Effect of the triple travel signal in the delay line

After the delay line the signal is attenuated another 50 dB, split into three for

the three receiving channels and coupled to the receiver chain through the 20 dB

coupler along with the canceling signal from the vector modulator. The measured

total attenuation on the calibration loop path is 150.6 dB which is in very good

agreement with the expected value of 149.3 dB. The beat frequency after the mixer

in the first mode of operation is 8 kHz. Using the knowledge of what the transmitted

power and the total attenuation of the calibration loop is, the power in the received

signal with frequency fb=8 kHz was calculated to be about 8 dBm.

The frequency of the signal modulating the delayed chirp is (see Equation 3.2)

16 kHz and the triple travel chirp was expected at three times the dominant frequency

fb. To test the calibration loop, the system was terminated at the receiver input and

54



at the vector modulator output, and the delay line signal was coupled into the receiver

chain. Data was collected and processed in the same way as in the case of the noise

floor measurements (see Section 4.3) but with no mean removal so that the delay

line signal is seen. The result is shown on Figure 4.11 where the dominant 8 kHz

frequency is seen along with the triple travel chirp at 24 kHz which is about 16 dB

below the main 8 kHz signal, as expected.
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Figure 4.11. Received power spectral density from the delay line

Experimentally validating the expected performance of the delay line, it was used

to determine the true available SNR and mininum detectable signal in the Wind

Profiler. For the given attenuation on the delay line loop using Equation 3.4 the

volume reflectivity of the equivalent target was calculated to be 6.02x10−10m−1. That

reflectivity is related to the structure constant by the relationship in Equation 2.4

to give a structure constant of C2
n = 1.1x10−9. Using that, Figure 4.12 depicts the

minimum detectable structure constant given the current Wind Profiler configuration

for a single pulse post-processing SNR of 0 dB. It is seen that the radar can detect only

very high values of the structure constant which correspond to high intensity refractive

index fluctuations due to very strong turbulence. Hence, averaging in required to
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improve the SNR and allow for smaller structure constant values to be detected,

reducing the temporal resolution of the Wind Profiler.

Figure 4.12. Minimum detectable log C2
n before averaging

4.5 Vector Modulator Measurements

The available isolation between the transmit and receive antennas in the Wind

Profiler is not sufficient to ensure linear operation of the mixer in the receiver chain.

To solve this, an active cancellation loop consisting of a vector modulator was inte-

grated into the radar system. The vector modulator and its hardware implementation

are described in Section 3.4. The isolation between the antennas determines what the

minumum required cancellation that ensures linear operation of the mixer is. In the

current configuration, two antennas are mounted on the MIRSL FMCW truck, with

a separation distance of 2.75 m, and the measured isolation between them is about

71 dB. Safe mixer input power levels are about 8 dBm and the RF gain prior to the

mixer is 40 dB. That sets the minimum required cancellation to about 6 dB. The

laboratory set up used for the cancellation loop testing is depicted in Figure 4.13.
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Figure 4.13. Setup used for cancellation loop tests

Cancellation measurements in the lab were carried out by mimicking the transmit-

ter leakage using a 20 dB high power coupler and appropriate attenuation as shown

on Figure 4.13. The first step in the cancellation process is to align the leakage signal

and the canceling signal from the vector modulator in time. The transmitter leakage

thus generated was fed into one of the digital oscilloscope (MSO6104A) channels. The

canceling signal from the vector modulator output was fed into another oscilloscope

channel. The total round-trip length of the antenna feed lines is about 12 m and the

leakage always lags the canceling signal. Additional cable was added in the canceling

signal path to visually align it on the oscilloscope with the leakage signal in time.
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After aligning the two signals in time, the leakage signal was fed into the receiver

input and the canceling signal is coupled to the receiver chain through the 20 dB

coupler. The output of the coupler was connected to the spectrum analyzer. The

user program controlling the analog output (PD2-AO-16/16) card that generates the

I and Q control signals was started with some initial gain and phase value. By

observing the cancelled signal on the spectrum analyzer, the gain-phase parameter

space is manually searched for an appropriate setpoint. As mentioned in Section 3.4,

the achieved cancellation is limited by the amplitude error between the leakage and

the canceling signal at each of the chirp frequencies. The smaller the signal to be

cancelled is, the less the amplitude error can be tolerated for a given cancellation.

Figure 4.14 shows the gain error in the vector modulator for different phase setpoint.

Figure 4.14. Vector modulator gain error

Figure 4.15 shows the leakage before and after cancellation. The maximum

achieved cancellation during the laboratory tests was about 15 dB which is sufficient

to ensure linear operation of the RF mixer. For better cancellation the amplitude

error between the leakage and the canceling signal should be less than 0.7 dB.
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Figure 4.15. Achieved leakage cancellation in the laboratory

To test the whole system performance with the canceling loop included into the

radar system, the cancelled leakage was fed into the receiver chain (see Figure 4.13)

and data was collected. With the leakage signal being sufficiently cancelled, the

system performance was expected to be the same as in the case where the receiver

is terminated. The data was processed in the same way described in Section 4.3 and

the result is plotted on Figure 4.16.

Figure 4.16. Received noise power spectral density with the cancellation loop
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It is seen from Figure 4.16, that the noise floor has increased by about 22 dB

compared to its value in Figure 4.9. This increase in the noise floor deteriorates the

radar SNR to unacceptable values. The additional noise was found to originate in

the analog output (PD-2-AO-16/16) card generating the vector modulator control

signals. The amplitude range of the analog output card is fixed to ±10 V and the

specified RMS noise voltage is to occupy the two LSBs for the frequency range of DC

to 10 kHz. This sets the card output noise floor to -91 dBm/Hz. This noise rides

on the control signal making the canceling signal noisy. The noise thus introduced

into the receiver chain, renders the receiver input noise to a value significantly higher

than the expected value of -174 dBm/Hz.

The voltage on the control lines vary between 250 mV and 750 mV. To reduce

the noise coupled into the canceling signal, that voltage can be increased to fill the

card dynamic range and the control line voltage can be provided by a voltage divider.

Such a setup will effectively reduce the noise power coupled into the vector modulator

while maintaining the same peak-to-peak setting on the control lines. This solution

was put to test by adding a simple voltage divider consisting of two resistors in series

with values of 1 kΩ and 120 Ω between the analog output card and the input to the

vector modulator control signals. The expected reduction in the noise is 20 log(0.107)

or 19.4 dB. The results of the test are shown on Figure 4.17.

The maximum control signal voltage is 750 mV while the maximum analog output

card voltage is 10 V. Adjusting the values of the voltage divider such that the control

signal range fills up the maximum range of the analog output card, the noise coupled

to the vector modulator signal can be reduced by as much as 21.8 dB. That can bring

the Wind Profiler noise floor to its current value but will still keep it 8 dB above the

ideal system noise floor.

In its current configuration, the bandwidth of the control signals is 230 MHz.

The vector modulator evaluation board allows for reduction of that bandwidth by
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Figure 4.17. Reduction of noise coupled through the vector modulator

installing external capacitors on the control lines on the board. In the case of the

Wind Profiler, the control signals for the vector modulator are DC signals which

allows for additional reduction of the coupled noise if both, the voltage divider and

external capacitors are integrated into the board circuit.

The requirement for a new design of an ultra low noise audio amplifier presents

the possibility for redistribution of the gain in the receiver. Part of the receiver gain

in the RF section can be moved down to the IF section. This can eliminate the need

of a vector modulator loop for transmitter leakage cancellation. In case of a future

deployment scenario where active cancelling of the transmitter leakage is needed, the

proposed solution for noise coupling reduction should be implemented.
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CHAPTER 5

FIELD DEPLOYMENT

During the laboratory tests the system performance was well understood. The

error sources that deviate the real performance from its ideal characteristics were

identified, and plausible improvements in the system architecture were analyzed. To

verify the radar behavior in field deployment conditions, and identify possible addi-

tional error sources, a series of test deployments were conducted during the months

of May and June 2009. The radar hardware was mounted on an instrument rack

and placed inside the cabin of the S-band FMCW truck. The S-band antennas were

removed and two of the Wind Profiler antennas were mounted on the existing rack on

the truck bed. The S-band truck is equipped with a generator that provides power

for the radar and the equipment, making the Wind Profiler independent and mobile.

During the deployments presented here the radar was operating in the first mode

(see Table 3.4). The results from the first few deployments are discussed in the fol-

lowing chapter. They will bring important insight before the implementation of SA

technology in the Wind Profiler hardware is carried on.

5.1 Deployment at the horse farm

The atmospheric refractive index fluctuations represent a very weak target, orders

of magnitude smaller than the ground clutter. It is important that the Wind Profiler

is deployed in as clutter free environment as possible. The UMASS horse farm located

west of the campus between Rt. 116 and N Maple St. is one of the few open areas

around Amherst, which made it a good candidate for the first field deployment.
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The radar was deployed at the southeast corner of the horse ring on May 6th 2009.

The day was partly cloudy with humidity between 60-70%. The isolation between

the antennas was measured first. Then, an active cancellation of the leakage was

attempted as described in Section 4.5. The leakage power and the best achieved

cancellation are shown on Figure 5.1.

Figure 5.1. Transmitter leakage and achieved cancellation

The transmitter leakage could not be cancelled better than 13 dB. The reduc-

tion in the achieved cancellation, compared to the laboratory tests measurements

was probably due to near range clutter that becomes superimposed on the transmit-

ter leakage through the antenna backlobe and sidelobes. The achieved cancellation

was sufficient for linear mixer operation and before data collection was initiated the

received signal was measured at the audio amplifiers output to test for possible satu-

ration of the DAQ. The received signal was clutter contaminated and well exceeded

the available DAQ dynamic range. To fit the received signal into that range a 10 dB

attenuator was added before the mixer. This reduced the expected radar SNR by

10 dB as the radar noise floor is fixed at a value set by the cascaded audio amplifier

pair (see Section 4.3). The minimum detectable C2
n in that case is plotted in Figure

5.2. Data was collected under these conditions. Thirty minute long files were stored

on the radar hard drive and processed in two steps.
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Figure 5.2. Minimum detectable signal before averaging during deployment

The raw binary file was first processed with the IDL procedure called wind-

prof process. The steps in the processing are depicted in Figure 5.3. By removing

the mean from the FFT ground clutter rejection and rejection of stationary targets

is achieved. The pulse-pair technique described in Section 2.3 is used to estimate

the mean Doppler velocity. After the processing of the raw binary file, the estimated

products of interest are stored in a file with the same name and extension “img“.

Another IDL procedure called windprof display reads the “.img“ file and after range

correction created 2D images of the radar reflectivity and Doppler velocity.

Figure 5.4 represents data collected from 17:38:00 to 18:08:00 EST time. The

noncoherent integration time was one second. The received signal is entirely clutter

dominated and no discernible boundary layer features were observed in the reflectivity

image. A periodic target movement in the range between 50 m to 350 m was observed.

The features of that target suggested that it has entered the received signal through

the antenna sidelobes. It was later identified as a horse rider that was going in circles

around the horse ring during the experiment (see Figure 5.5). The bright line at

750 m was an artifact in the radar.

64



1. Specify the time for 

noncoherent integration and the 

receiver channel

2. Read the number of profiles 

available for noncoherent 

integration and store it in a matrix 

3. FFT of the matrix

5. Multiply the matrix by its 

conjugate and compute the 

average power

4. Compute the mean of the FFT 

and remove it from each sweep

6. Compute the autocorrelation of 

the matrix with lag of one sweep

7. Compute Doppler velocity from 

the phase of the autocorrelation

8. Compute the correlation 

coefficient

9. Store the averaged power, 

Doppler velocity, the matrix mean 

and correlation coefficient in a 

“*.img” file

Raw binary file

R
e
p
e
a
t 
u
n
ti
l 
e
n
d
 

o
f 
fi
le
 i
s
 r
e
a
c
h
e
d

Figure 5.3. Raw binary file processing chain

The Wind Profiler antennas are commercial communication antennas that were

purchased from Gabriel Antennas. The back to front ratio for the antennas is specified

to be -22 dB but no antenna pattern was provided. That first deployment results

suggested that the antenna sidelobe and/or backlobe levels are not sufficient given

the dominant clutter in the received data. The antennas mounted on the FMCW

truck bed are elevated from the ground about 3 m. It was suspected that the clutter

primarily entered the receiver through the backlobe illuminating the ground.
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Figure 5.4. Returned power and Doppler velocity during deployment - May 6th
2009, 17:38:00 local time

In search of a better location, the radar was deployed on the side of Cemetery Rd

in Hadley, MA on May 8th 2009. The site consisted primarily of plowed fields with

almost no buildings in the vicinity. The deployment procedure and data processing

followed the same steps as described here. In this case again, the clutter was the

dominant signal in the receiver forcing 10 dB attenuation to be added to the receiver

chain. Figure 5.6 shows another 30 minutes of data collected during the deployment.

A target moving away and towards the radar periodically was clearly seen on the

Doppler image. This was suspected to be a tractor plowing the nearby field. This

was later verified when the range to the tractor was superimposed on an image from

Google Earth (see Figure 5.7).

5.2 Deployment at Tilson Farm

The Cemetery Rd. site is the most suitable in the area in terms of minimizing the

clutter. Before taking the truck far in search of a better deployment location it was

decided that building a shroud fence around the antennas is a fast and inexpensive
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Figure 5.5. Deployment location at the UMASS horse farm (image produced by
Google Earth)

way to improve the antenna backlobe/sidelobe levels. The truck was taken to Tilson

farm (UMASS deployment site off of Tilson Farm Rd, Amherst, MA) and two of the

four available antennas were assembled and leveled on the ground. A shroud fence

was build around them using hardware cloth. The fence started at the ground level

and reached 15 to 20 cm above the antennas. The two antennas with the shroud

fence around are depicted on Figure 5.8. The FMCW truck was parked next to the

antennas.

Under these condition the Wind Profiler performance was tested again. The an-

tenna isolation improved by 2 dB but the improvement in clutter rejection was in-

significant. That suggested that the main path for the clutter is not the backlobe but

the antenna sidelobes.

At this point, before undertaking the task of building a higher fence or looking for

a suitable deployment site, it was decided to test the radar sensitivity using rain as

a target with known reflectivity. The received power from a volume filled with rain
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Figure 5.6. Returned power and Doppler velocity during deployment - May 8th
2009, 12:09:05 local time

drop scatterers and antennas with Gaussian shaped beams is given by [10]

Pr =
PtG

2Θ2∆Rπ3k2Z1018

512(4ln2)R2λ2
, (5.1)

where k2 = 0.93 for centimiter wavelengths, and Z is the radar reflectivity factor

in units of mm6

m3 . Comparing this with Equation 2.15 and using Equation 2.4, a

relationship between Z and C2
n is derived as

C2
n =

π5k2Z1018

1.52λ
11

3

. (5.2)

In the morning of June 9th 2009 data was collected from 9:01:10 to 9:31:10 EST

time during a rainfall. The average reflectivity between 9:02:10 and 9:03:10 was

estimated between 800 to 1000 m height above ground level. This region was chosen

for two reasons - (i) it can be assumed that it is clutter free, (ii) the computed rain

rate was later compared with the data from the NexRAD KBOX radar located in

Boston, MA. KBOX has an elevation angle of 0.5 deg and its radar beam passes above
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Figure 5.7. Deployment location at Cemetery Rd, Hadley, MA (image produced by
Google Earth)

Amherst at a height of about 1.1 km. Using Equation 5.2, the equivalent C2
n values

were computed and the results are shown on Figure 5.9.

To verify the estimated values for the reflectivity factor, dataset for the KBOX

base reflectivity from the NexRAD archives (http://www.ncdc.noaa.gov/nexradinv/)

was downloaded for the same time period. Figure 5.10 depicts the base reflectivity

seen by KBOX between 9:00:00 and 9:05:00 EST time. The exact location of the

Wind Profiler truck is indicated on the image. It can be seen that the estimated

reflectivity factor from the Wind Profiler coincides well with the KBOX data. This

experiment verified that the Wind Profiler antennas were well aligned in terms of look

direction and polarization.

Given the reflectivity factor, the equivalent C2
n values, computed using Equation

5.2, lie around 2x10−11. Comparing this with the calculated minimum detectable C2
n

(see Figure 5.2), it is seen that such C2
n values won’t be detected unless averaging is

performed. Indeed, that was the case as seen on Figure 5.11. Noncoherent averaging
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Figure 5.8. Shroud fence built around the Wind Profiler antennas

of one second was performed. That increased the SNR by 10 dB and the rain was

easily identified on Figure 5.12. Towards the end of the data file the rain diminished

and fell below the radar noise floor. The KBOX base reflectivity data indicated a

reflectivity factor of 20 dBz at that time.

The measured mean Doppler velocity of rain was about -6.5 m/s. The terminal

fall velocity of droplets is dependent on their diameter and a relationship between the

two was developed by Gunn and Kinzer in 1949 [13]. Burrows and Attwood studied

the drop size distribution for a given rain rate [4]. Finally, we used the Marshall-

Palmer relationship between the reflectivity factor Z (mm6m−3) and the rain rate R

(mm/h), given as Z = 200R1.6, to find what the mean drop size was (using the results

of Burrows and Attwood). For the reflectivity factor measured by the Wind Profiler

(see Figure 5.9), the rain rate R lay between 5 and 7 mm/h [9]. More than 50% of

the drops contained within the volume of interest have a diameter between 1.5 mm

and 2.5 mm [4]. The mean terminal velocity of drops with such diameter, using the

results of Gunn and Kinzer, is about 6.2 m/s, which was in very good agreement with

the Wind Profiler estimates.

70



0 10 20 30 40 50
750

800

850

900

950

1000

1050

Reflectivity Factor, dBz

H
ei

gh
t,m

2 4 6 8 10

x 10
−11

750

800

850

900

950

1000

1050

Equivalent log(C
n
2)

H
ei

gh
t,m

Figure 5.9. Computed reflectivity factor and the equivalent C2
n

Numerous models for the drop size distribution and relationships between the

reflectivity factor Z and the rain rate R under different atmospheric conditions have

been developed and extensively studied, but they are out of the scope of this thesis.

The purpose here was to qualitatively analyze the Wind Profiler measurements of

Doppler velocity.

The field deployment results described in this chapter confirmed the expected

radar performance after the laboratory tests and proved very helpful in identifying

the current major error sources. The lessons learned helped in generating useful

recommendations for future work.
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Figure 5.10. KBOX base reflectivity between 9:00:00 and 9:05:00 EST time on June
9th 2009 (courtesy of National Weather Service)

Figure 5.11. Wind Profiler reflectivity and Doppler velocity - June 9th 2009 starting
at 9:01:10 local time (no averaging)
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Figure 5.12. Wind Profiler reflectivity and Doppler velocity - June 9th 2009 starting
at 9:01:10 local time (1 sec averaging)
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The work presented in this thesis is a detailed description of the research efforts

to develop an UHF FM-CW Wind Profiler for boundary layer studies that will even-

tually utilize spaced antenna technique for retrieving horizontal wind velocities, thus

providing information about 3D wind fields. The Wind Profiler design and devel-

opment was initiated in the summer of 2006 by Prof. Frasier and research engineer

PeiSang Tsai. The FPGA and DDS system were later integrated by visiting Master’s

student Albert Genis. This chapter contains a summary of the research work con-

ducted from then on to the Wind Profiler present stage. Valuable conclusions and

recommendations for future work are included as reference for further refinement in

the development and deployment of the Wind Profiler.

6.1 Summary of Work

The main body of the thesis includes the radar hardware upgrade, hardware eval-

uation and laboratory tests, and first field deployment results.

The hardware upgrade consisted of the following.

(i) The ground coupled noise in the receiver chain was eliminated. The noise entered

the receiver through the common ground between the solid state RF amplifier

and some receiver components. The amplifier is now housed in a separate radar

box and powered independently by a separate power supply.

(ii) The spurious signals that were radiatively coupled into the receiver at the audio

module from the ribbon cable carrying the FPGA digital control signals were
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eliminated. Currently, the FPGA and DDS are housed in a separate box while

the audio module has been moved in the box containing the receiver components

in the RF section in close proximity to the mixers. The module is placed within

a small shielding metal box. All FPGA signals carrying digital logic have been

converted to coax cables.

(iii) A calibration loop consisting of a BAW delay line with a nominal delay of 2 µs

was integrated into the radar hardware.

(iv) A new and robust FPGA design for radar control signal generation based on syn-

chronous counters was developed, thereby eliminating existing synchronization

problems.

(v) A cancellation loop for transmitter leakage cancellation, consisting of an analog

output PD2-AO-16/16 card and RF vector modulator, was integrated into the

system and its performance tested. Currently, the cancellation is not automated.

The best gain and phase values for the vector modulator are manually searched

for. This requires the presence of an oscilloscope and spectrum analyzer at the

deployment site. Noise from the control signal lines of the vector modulator

coupled into the receiver and degraded the radar sensitivity. Simple solution to

this problem, utilizing a voltage divider, was proposed and tested. The current

design stage and performance of the cancellation loop, and the need of a new

design for the IF section, suggest that some of the RF gain can be moved down

to the IF section, thus eliminating the need of the existing cancellation loop.

(vi) The IF receiver gain was increased. More gain was required in the receiver in

order to bring the desired signal level above the data acquisition quantization

noise floor. Two of the three available 40 dB audio amplifiers were cascaded such

that the atmospheric echoes fit in the dynamic range of the data acquisition card
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(vii) New audio filters were designed and implemented. The steep frequency response

of the AVENS audio filter created filter ringing which after the additional audio

section gain was saturating the data acquisition. A new IF filter consisting of

a high pass and low pass filter cascade was designed and integrated into the

hardware. The new filter characteristics were chosen such that it effectively

cancels the transmit leakage while allowing for observation of low altitudes, and

has ringing that does not saturate the data acquisition.

After integration and/or modification of the different radar blocks, they were tested in

laboratory conditions to evaluate their performance and compare it with the expected

ideal performance. Laboratory tests involved the following.

(i) The transmit power was measured. It was confirmed that the radar outputs the

desired power of 30 W.

(ii) The gain of the RF section (before mixer) and the IF section was measured and

recorded to be 39.5 dB and 80 dB, respectively.

(iii) The new IF filter frequency response was measured and its performance was

confirmed to match with the expected values.

(iv) Noise figure measurements were conducted using the gain and Y-factor method.

The noise figure was measured to be 1.31 dB with the gain method and 1.42 dB

with the Y-factor method for the center frequency of 915 MHz. Results were

in very good agreement with the theoritically calculated value of 1.28 dB. The

radar noise floor was measured and found to be 8 dB higher than the calculated

value. The source of that excess noise was found to be the internal noise of the

cascaded audio amplifier pair.

(v) The calibration loop performance was analyzed and tested and the results were

used to determine the true available SNR of the Wind Profiler.
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(vi) Limitations of the cancellation loop were discussed and transmit leakage can-

cellation tests were conducted, and the results recorded. The radar noise floor

increased by about 22 dB when cancellation was attempted. The reason for

that was the noisy control signals of the vector modulator which coupled into

the canceling signal and from there into the receiver chain. Efforts were made

to alleviate the level of noise thus coupled. The achieved reduction of noise

coupling was about 17 dB. Solutions were proposed for further improvement of

that value.

The Wind Profiler performance was tested during a few field deployments. The

first deployment was at the UMASS horse farm and the acquired data suggested

that the received signal was strongly clutter contaminated due to insufficient antenna

back and sidelobe levels. The available SNR was reduced as attenuation needed to

be added in the receiver chain (the noise floor is constant and set by the audio ampli-

fier module) making the radar insensitive to atmospheric refractive index fluctuations

backscatter. The cancellation loop was also tested and the maximum achieve cancel-

lation was around 10 dB. The radar was moved to Tilson farm where shrouds around

the antennas were built to prevent energy spill over through the antenna backlobe.

The clutter rejection didn’t improve significantly which suggested that sidelobes were

the primary path for strong target clutter entering into the receiver. The Wind

Profiler sensitivity was tested during rainfall. The reflectivity factor was estimated

with the available data and found to be in good agreement with the base reflectivity

provided by the National Weather Service archive. This experiment confirmed the

expected radar sensitivity and antenna alignment in terms of look direction and po-

larization. However, in its current configuration the radar is incapable of sensing the

weak atmospheric refractive index fluctuations.
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6.2 Recommendations for Future Work

The Wind Profiler system has undergone important hardware transformations

and upgrade. There still exist error sources and system imperfections that prevent

it from reaching its desired ideal performance. They were all well identified, and

eliminated as time permitted during the laboratory testing and the field deployments,

and are described in the main body of this thesis. The following section tries to

deliver the insight and knowledge gained during the research and summarize the

recommendations for future work that rise from it.

The major error sources include (i) the raise in the radar noise floor due to the

internal noise of the audio amplifier module, (ii) the additional noise introduced into

the received from the noisy vector modulator control lines, and (iii) the strong clutter

entering the receiver through the antenna sidelobes.

The low transmit power and the low antenna gain require a receiver with low

noise and a very high gain. The internal noise of the audio amplifiers used in the IF

section becomes significant due to the high IF gain. That brings the need for a new

audio amplifier module. Currently, an ultra low noise operational audio amplifier is

being design for that purpose. Part of the gain in the RF section will be moved down

to the IF section thus eliminating the need for cancellation loop in most deployment

conditions. Simulations will be performed to determine the best possible IF filter

response allowing for low altitude observation of the nocturnal boundary layer.

During the field deployments is was observed that the sidelobe level of the currenly

used Wind Profiler antennas is insufficient and brings the need for attenuation to be

added in the receiver chain in order to prevent the data acquisition from saturation.

The shroud fence that was built is about 20 cm higher than the antennas and doesn’t

improve the sidelobe levels significantly. A higher shroud fence needs to be built for

that purpose. A shroud fence can also be built directly on the truck bed keeping the

system mobile.
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In a future radar system, where a similar cancellation loop is needed, caution

should be taken to guarantee that noise does not couple into the receiver. The

suggestions in Section 4.5 can be used as guidelines for improving the cancellation

loop noise performance.
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